

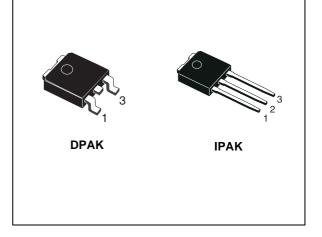
STD40N2LH5 STU40N2LH5

N-channel 25 V, 0.01 Ω 40 A, DPAK, IPAK STripFET™ V Power MOSFET

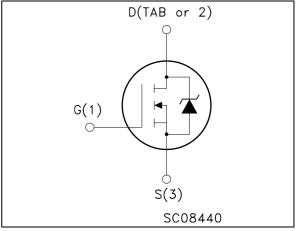
Preliminary Data

Features

Туре	V _{DSS}	R _{DS(on)} max	۱ _D
STD40N2LH5	25 V	0.012 Ω	40 A
STU40N2LH5	25 V	0.0126 Ω	40 A


- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- Very low switching gate charge
- High avalanche ruggedness
- Low gate drive power losses

Application


Switching applications

Description

This product utilizes the 5th generation of design rules of ST's proprietary STripFETTM technology. The lowest available $R_{DS(on)}^*Q_g$, in the standard packages, makes this device suitable for the most demanding DC-DC converter applications, where high power density is to be achieved.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STD40N2LH5	40N2LH5	DPAK	Tape and reel
STU40N2LH5	40N2LH5	IPAK	Tube

1 Electrical ratings

Table 2.	Absolute	maximum	ratings
----------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} =0)	25	V
V _{GS}	Gate-Source voltage	± 22	V
I _D	Drain current (continuous) at $T_C = 25 \ ^{\circ}C$	40	A
I _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	28	A
I _{DM} ⁽¹⁾	Drain current (pulsed)	160	А
P _{TOT}	Total dissipation at $T_{C} = 25 \ ^{\circ}C$	35	W
	Derating factor	0.23	W/°C
E _{AS} ⁽²⁾	Single pulse avalanche energy	TBD	mJ
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C

1. Pulse width limited by safe operating area

2. Starting Tj = 25 °C, I_D = 24 A, V_{DD} = 12 V

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	4.3	°C/W
Rthj-amb	Thermal resistance junction-case max	100	°C/W
TI	Maximum lead temperature for soldering purpose	275	°C

2 Electrical characteristics

(T_{CASE} = 25°C unless otherwise specified)

Table 4.	Static					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	25			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 25 V V _{DS} = 25 V, T _C = 125 °C			1 10	μA μA
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 22 V			±100	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	1			۷
		V _{GS} = 10 V, I _D = 20 A SMD version		0.01	0.012	Ω
Brach	Static drain-source on	V_{GS} = 10 V, I _D = 20 A		0.0106	0.0126	Ω
R _{DS(on)}	resistance	V _{GS} = 5 V, I _D = 20 A SMD version		0.0135	0.017	Ω
		V_{GS} = 5 V, I _D = 20 A		0.0141	0.0176	Ω

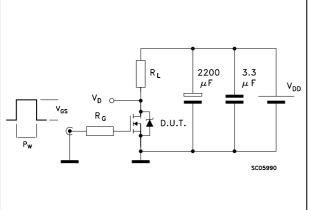
Table 4. Static

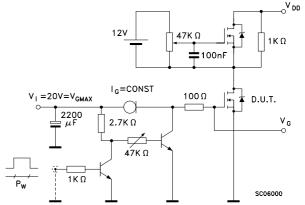
Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f=1 MHz, V _{GS} = 0		840 180 29		pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =15 V, I _D = 40 A V_{GS} = 5 V <i>(Figure 3)</i>		8 TBD TBD		nC nC nC
Q _{gs1} Q _{gs2}	Pre V _{th} gate-to-source charge Post V _{th} gate-to-source charge	V _{DD} =15 V, I _D = 40 A V _{GS} = 5 V <i>(Figure 8)</i>		TBD TBD		nC nC
R _G	Gate input resistance	f=1 MHz gate bias Bias= 0 test signal level=20 mV open drain		1.1		Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	V_{DD} = 10 V, I _D = 20 A, R _G = 4.7 Ω , V _{GS} = 10 V (Figure 2 and Figure 7)		TBD TBD		ns ns
t _{d(off)} t _f	Turn-off delay time Fall time	V_{DD} = 10 V, I _D = 20 A, R _G = 4.7 Ω , V _{GS} = 10 V (Figure 2 and Figure 7)		TBD TBD		ns ns

 Table 6.
 Switching on/off (resistive load)

Table 7. Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain current Source-drain current (pulsed) ⁽¹⁾				40 160	A A
V_{SD}	Forward on voltage	I _{SD} = 20 A, V _{GS} =0			1.1	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 40 A, di/dt =100 A/μs, V _{DD} = 20 V, Tj = 25 °C (<i>Figure 4</i>)		TBD TBD TBD		ns nC A


1. Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%

3 **Test circuits**

Figure 2. Switching times test circuit for resistive load

Test circuit for inductive load Figure 4. switching and diode recovery times

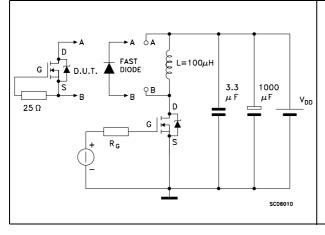
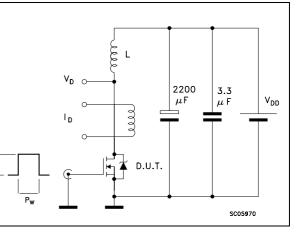



Figure 5. **Unclamped Inductive load test** circuit

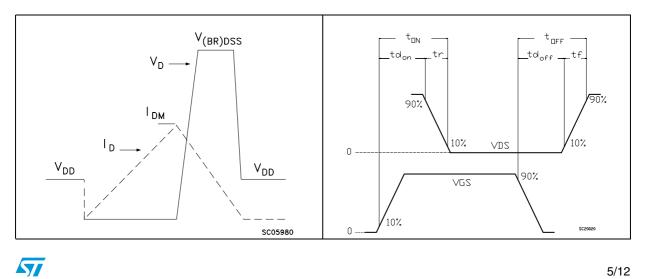
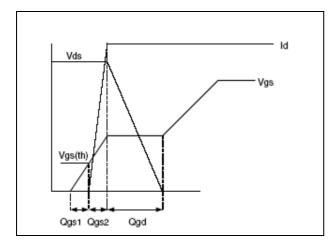
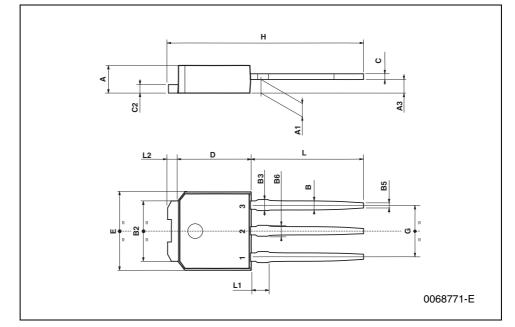



Figure 3. Gate charge test circuit

Figure 8. Gate charge waveform

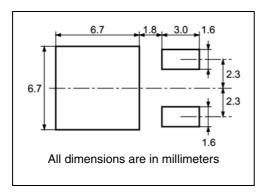
4 Package mechanical data

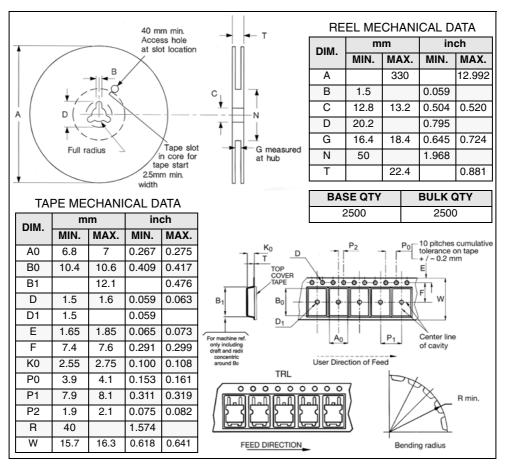
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*


DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		2.28			0.090	
e1	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8		0.000	0.031	0.000
L4	0.6		1	0.023	0.000	0.039
R V2	0°	0.2	8°	0°	0.008	8°
		E	<u>c2</u>	- THERMAL	PAD	

٦

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047




57

5 Packaging mechanical data

DPAK FOOTPRINT

10/12

6 Revision history

Table 8. Document revision history

Date	Revision	Changes	
24-Jul-2008	1	Initial release	
23-Sep-2008	2	V _{GS} value has been changed on <i>Table 2</i> and <i>Table 5</i>	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

